主 講 人:李端教授
地 點(diǎn):經(jīng)管北樓316閩海報(bào)告廳
主 辦 方:經(jīng)濟(jì)與管理學(xué)院
開(kāi)始時(shí)間:2018-12-23 15:00
結(jié)束時(shí)間:2018-12-23 16:30
李端教授現(xiàn)為香港城市大學(xué)運(yùn)籌學(xué)講座教授,,協(xié)理學(xué)務(wù)副校長(zhǎng)(策略規(guī)劃)與新成立的數(shù)據(jù)科學(xué)學(xué)院的署理院長(zhǎng),。
在2017年12月加盟香港城市大學(xué)前,李端在香港中文大學(xué)工作23年,。他是系統(tǒng)工程與工程管理學(xué)系禤永明冠名講座教授,香港中文大學(xué)金融工程中心主任及香港中文大學(xué)(深圳)金融工程碩士課程主任。從2003年到2012年,, 李端教授擔(dān)任香港中文大學(xué)系統(tǒng)工程與工程管理學(xué)系系主任。
李端教授是國(guó)際運(yùn)籌優(yōu)化,、金融工程領(lǐng)域的知名學(xué)者,,主持美國(guó)自然科學(xué)基金、香港研究基金,、與中國(guó)國(guó)家自然科學(xué)基金等多項(xiàng)研究課題,。他研究興趣廣泛,在最優(yōu)化理論,、最優(yōu)控制理論,、金融工程及運(yùn)籌學(xué)等領(lǐng)域貢獻(xiàn)良多,有不少開(kāi)創(chuàng)性的工作,。特別是他開(kāi)創(chuàng)了動(dòng)態(tài)均值-風(fēng)險(xiǎn)投資組合的研究框架,,引領(lǐng)及貢獻(xiàn)這個(gè)領(lǐng)域的發(fā)展。他在國(guó)際期刊上發(fā)表論文近200篇,,其中包括Operations Research等眾多國(guó)際頂尖期刊,。 李端教授并擔(dān)任許多國(guó)際一流雜志的編委或特刊主編。他現(xiàn)在還擔(dān)任中國(guó)運(yùn)籌學(xué)會(huì)雜志副主編,。李端教授曾擔(dān)任中國(guó)數(shù)學(xué)規(guī)劃協(xié)會(huì)副理事長(zhǎng),,中國(guó)系統(tǒng)工程學(xué)會(huì)金融系統(tǒng)工程專(zhuān)業(yè)委員會(huì)副理事長(zhǎng),及中國(guó)科學(xué)院國(guó)家數(shù)學(xué)與交叉科學(xué)中心數(shù)學(xué)與經(jīng)濟(jì)金融交叉研究學(xué)部學(xué)術(shù)委員會(huì)委員,。李端教授是2020年在香港舉行的第十一屆World Congress of Bachelier Finance Society大會(huì)的組委會(huì)共同主席,。
報(bào)告摘要:We investigate a discrete-time mean-risk portfolio selection problem, where risk is measured by the conditional value-at-risk (CVaR). By embedding this time-inconsistent problem into a family of expected utility maximization problems with a piecewise linear utility function, we solve the problem analytically. In contrast to the case of a complete, continuous-time market, the mean-CVaR efficient frontier in this generally incomplete, discrete-time setting is a straight line in the mean-CVaR plane and there is in particular a constant trade-off between risk and return. The cumulated amount invested in the risky assets under the optimal strategy is of a V-shaped pattern as a function of the current wealth. We further solve an inverse investment problem, where we investigate how mean-CVaR preferences need to adapt such that the precommited optimal strategy remains optimal at any point in time. Our result shows that, although conceptually distinct, a precommited mean-CVaR investor behaves like a naive mean-CVaR investor with a time-increasing confidence level for the CVaR, who revises her investment decision at every point in time. Finally, an empirical application of our results suggests that risk measured by the CVaR might help to understand the long-standing equity premium puzzle.